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Abstract

With the explosion of imaging applications, and due to the massive amounts of imagery
data, data compression is essential. Lossless compression, also called entropy coding, is of special

importance because it is used not only for compression of text files and medical images, but also

as an inherent part of lossy compression. Therefore, fast entropy coding/decoding algorithms
are desirable. In this paper we will develop parallel algorithms for several widely used entropy
coding techniques, namely, arithmetic coding, run-length encoding (RLE), and Huffman coding.

Our parallel arithmetic coding algorithm takes 0(log2 TV
)
time on an TV-processor hypercube,

where TV is the input size. For RLE, our parallel coding and decoding algorithms take O(logTV)
time on an TV-processors computer. Finally, in the case of Huffman coding, the parallel coding

algorithm takes 0(log
2
TV + nlogn), where n is the alphabet size, n « TV. As for decoding,

both arithmetic and Huffman are hard to parallelize. However, special provisions could be
made in many applications to make arithmetic and Huffman decoding fairly parallel.

Keywords: Arithmetic Coding, Run-Length Encoding, Huffman Coding, Decoding, Par-

allel Algorithms, Hypercube, Statistics Gathering.

1 Introduction

With the explosion of imaging applications, and due to the massive amounts of imagery data,

data compression is essential to reduce the storage and transmission requirements of images and
videos [14]. Indeed, due to the critical importance of compression, there are several international

organizations that develop compression standards. Among the most notable standards are

JPEG [11] for still images and MPEG for videos [5].

Compression can be lossless or lossy. Lossless compression, also called entropy coding,

allows for perfect reconstruction of the data, whereas lossy compression does not. Even in lossy

compression, which is by far more prevalent in image and video compression, entropy coding is

needed as a last stage after the data has been transformed and quantized [14, 18]. Therefore,

fast entropy coding algorithms are of prime importance, especially in online or even real-time

applications such as video teleconferencing.

Parallel algorithms are an obvious choice for fast processing. Therefore, in this paper we
will develop parallel algorithms for several widely used entropy coding techniques, namely,

arithmetic coding [13], run-length encoding (RLE) [12, 16], and Huffman coding [4], Our

parallel arithmetic coding algorithm takes 0(log
2
TV) time on an TV-processor hypercube, where

TV is the input size. The time is dominated by sorting, for otherwise it takes O(logTV) time.

Unfortunately, arithmetic decoding seems to be hard to parallelize because it is a sequential

process of essentially logical computations. In practice, however, files are broken down into

many substrings before being arithmetic-coded, for precision reasons that will become clear

later on. Accordingly, the coded streams of those substrings can be decoded in parallel.

1 This research was performed in part at the National Institute of Standards and Technology.
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For RLE, we design parallel algorithms for both encoding and decoding, each taking 0(log N)
time. Finally, in the case of Huffman coding, the algorithm is easily data-parallel; the devel-

opment of the Huffman tree to determine the codeword of each symbol of the alphabet is the

only sequential part, but its time complexity is often insignificant because the alphabet size

is typically small — only in the order of tens or at most hundreds of symbols. The statistics

gathering for computing symbol probabilities needed for the Huffman tree is parallelized to take

0(log
2
AT) time. Like arithmetic decoding, Huffman decoding is highly sequential. However, in

certain applications where the data is inherently broken into many blocks that are processed

independently as in JPEG/MPEG, simple provisions can be made to have the bitstreams easily

separable into many independent substreams that can be decoded independently in parallel.

It must be noted that other lossless compression techniques are also in use such as Lempel-
Ziv [19], bit-plane coding [15], and differential pulse-code modulation (DPCM) [10]. The first

two will not be considered here for two reasons. First, they are not usually used in the en-

tropy coding stage of lossy compression. Second, Lempel-Ziv coding seems to be inherently

sequential, and bit-plane coding involves essentially RLE and Huffman coding, both of which
are covered independently in this paper. The last technique, DPCM, involves the computation
of multidimensional recurrence relations, and is the subject of another paper by this author.

The paper is organized as follows. The next section gives a brief description of the various

standard parallel operations that will be used in our algorithms. Section 3 develops a parallel

algorithm for arithmetic coding. Section 4 develops parallel encoding and decoding algorithms

for RLE. Section 5 addresses the parallelization of Huffman coding and decoding. Conclusions

and future directions are given in section 6.

2 Preliminaries

The parallel algorithms designed in this paper use several standard parallel operations. The
following is a list of those operations along with a brief description.

• Parsort(Y[0 : AT— 1]; Z[0 : N— 1], 7r[0 : TV— 1]): It sorts in parallel the input array Y into

Z, and records the permutation n that orders Y to Z : Z[k\ = Y[7r[A;]]. It uses Batcher's

bitonic sorting [2], which takes 0(log
2 N) time on an ./V-processor hypercube. The choice

is justified because other practical parallel sorting algorithms are slower, and the O(logTV)

time sorting algorithms [1] are not practical due to their high constant factor.

• C=Parmult(i4o:jv_i): It multiplies the N elements of the array A, yielding the product

C. In this paper, the elements of A are 2x2 matrices. This operation clearly takes simply

0(logN
)
time on O(N) processors connected as a hypercube [3].

• A[0, A^ - l]=Parprefix(ao:Ar-i): This is the well-known parallel prefix operation [3, 7, 9].

It computes from the input array a the array A where A[i\ = a[0] + a[l] + ... + a[z], for all

i — 0, 1, ..., N — 1. Parallel prefix takes OfiogN )
time on a ./V-processor hypercube.

• T[0 : N — l]=Barrier-Parprefix(a[0 : N —
1]): This operation assumes that the input

array a is divided into groups of consecutive elements; every group has a left-barrier at its

start and a right-barrier at its end. Barrier-Parprefix performs a parallel prefix within

each group independently from other groups. It takes O(logAT) time on an ./V-processor

hypercube. To see this, let /[0 : N—
1] be a flag array where f[k] — 0 if k is a right-barrier,

and f[k] = 1, otherwise. Clearly, A[i] — f[i — 1 ]A\i — 1] + a\i for all i. The latter is a

linear recurrence relation solvable in 0{\ogN) time on an ./V-processor hypercube [6].
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3 Parallel Arithmetic Coding

Arithmetic coding [13] relies heavily on the probability distributions of the input files to be
coded. Essentially, arithmetic coding maps each input file to a subinterval [L R\ of the unit

interval [0 1] such that the probability of the input file is R — L. Afterwards, it represents the

fraction value L in n-ary using r = [—logn (R — L)] n-ary digits, where n is the size of the

alphabet. The stream of those r digits are taken to be the code of the input file.

The mapping of an input file into a subinterval [L i?] is done progressively by reading the

file and updating the [L R] subinterval to always be the corresponding subinterval of the input

substring scanned so for. The update rule works as follows. Assume that the input file is the

string x[0 : N— 1] where every symbol is in the alphabet {ao, ai, ..., an_i}, and that the substring

x[0 : k — 1] has been processed, i.e., mapped to interval [L 7?]. Let Pki be the probability that

the next symbol is a* given that the previous symbols are a:[0 : k — 1]. Divide the current

interval [L R\ into n successive subintervals where the i-th subinterval is of length Pki [R — L) for

i = 0, 1 , ..., n— 1
,
that is, the z-th subinterval is [Li Ri] where Li = (PkQ+

P

k i + ...+Pk^-i)(R— L)
and Ri = + Pki(R — L). Finally, if the next symbol in the input file is aio for some z 0 ,

the

update is L = Lio and R = Ri0
. The last value of the interval [L R] after the whole input string

has been processed is the desired subinterval.

The alphabet {ao, ai, ..., an_i} can be arbitrary. Some of the typical alphabets are the binary

alphabet {0, 1} for binary input files, the ascii alphabet, and any finite set of real numbers or

integers as may occur in run-length encoding. In the last category, the alphabet {a0 ,
a i: ..., an_i}

can be easily mapped to the more convenient alphabet {0, 1, ...,n — 1}. That mapping is applied

at the outset before arithmetic coding starts, and the inverse mapping is applied after arithmetic

decoding is completed. Henceforth, we will assume the alphabet to be {0, 1, ...,n — 1}.

The conditional probabilities {Pkt} are either computed statistically from the input file or

derived from an assumed theoretical probabilistic model about the input files. Naturally, the

statistical method is the one used most often, and will be assumed here. The structure of the

probabilistic model is, however, still useful in knowing what statistical data should be gathered.

The model often used is the Markov model of a certain order m, where m tends to be fairly

small, in the order of 1-5. That is, the probability that the next symbol is of some value a

depends on only the values of the previous m symbols. Therefore, to determine statistically the

probability that the next symbol is a given that the previous m symbols are some 6i62 ...6m ,
it

suffices to compute the frequency of occurrences of the substring 61 62 ...6m a in the input string,

and normalize that frequency by N
,
which is the total number of substrings of length m + 1

symbols in the zero-padded input string. The padding of m 0’s to the left of x is taken to

simplify the statistics gathering at the left boundary of x: assume that the imaginary symbols
x[—m : —1] are all 0.

To summerize, the sequential algorithm for computing the statistical probabilities and per-

forming arithmetic coding is presented next.

Algorithm Arithmetic-coding(input: x[0 : N -
1]; output: B)

begin /* The alphabet is assumed to be known, say {0, 1, ...,n — 1} */

Phase I : Statistics Gathering

for k = 0 to N — 1 do /* compute the probabilities {Pki}'s which are initialized to 0*/

compute the frequency fk of the substring x[k — m : k\ in the whole string x
;

set Qk = fk/N ;

let i = x[k], and set Pki = Qk ;
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endfor

for k = 0 to TV — 1 do /* compute the probabilities
{Pk }'s which are initialized to 0 */

Let i = x[k]
:
and set Pk = PkQ + Pkl + ... + Pk,i~i]

endfor

Phase II : finding the interval [L R) corresponding to the string x

Initialize: L — 0 and R = 1;

for k = 0 to N — 1 do

D = R-L
;

L = L + PkD;

R — L + QkD\

endfor

Phase III : computing the output stream B as a code for the input string x

r = \-\ogn(R-m
Take the n-ary representation of L — O.LiL2 ...L r ...]

B = [Li L2 ... Lr ];

end

To parallelize the Arithmetic-coding algorithm, the first two phases have to be parallelized.

Note that in Phase III, L is naturally represented in binary inside the computer, so phase III

is nothing more than chopping off the first [Ylogn] bits of the binary representation of L.

Parallelization of Phase I: Statistics Gathering

Each substring x[k — m : k] is treated as an (m + l)-tuple of integer components, for k =
0, 2, ..., N— 1; those N tuples are denoted as an array Y[0 : A"— 1]. Denote the m+1 components
of y[Jfc] as (Ym [k],...,Y1 [k],Y0 [k\), that is, Y0 [k] = x[k], Y\[k] = x[k — 1], ..., Ym [k] = x[k — m\.

Sort Y into Z using Parsort(y; Z, n), where Z[k\ = Y[-7r[A:]]. Clearly, all identical tuples are

consecutive in Z. Associate Qn
[
k

]

and Pn
[
k],z0 [k] with tuple Z[k\ = Y[7t[/c]].

We will divide Z into segments and supersegments. A segment is any maximal subarray of

identical consecutive elements of Z. A supersegment is a maximal set of consecutive segments
where the tuple values differ in at most the rightmost component. The probabilities Qk s and
Pk ^c[k] s are then computed as follows:

Procedure Compute-probs(input: Z [0 : N - l],7r[0 : N —
1]; output: Qk S, Pk,x[k] s

)

begin

1. Put a left-barrier and a right-barrier at the beginning and at the end of every segment,

respectively. It can be done in the following way. First, put a left barrier at k = 0 and a

right barrier at k — N — 1. Afterwords, do
for k = 0 to N — 2 pardo

if Z[k\ < Z[k + 1], put a right barrier at k and a left barrier at k + 1.

endfor

2. Let <?[0 : N —
1] be an integer array where every term is initialized to 1;

3. G[0 : N — l]=Barrier-Parprefix(g).
Clearly, if k corresponds to a right barrier of a segment, then G[k\ is the number of terms
of that segment, that is, G[k\ is the frequency of Z[k\ = Y[7r[fc]J.
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4. Broadcast within each segment the G[k\ of the segment’s right barrier, and then set in

parallel every G[i\ term in the segment to G[k].

5. for k = 0 to N — 1 pardo
set Qv[k] = G[k\/N and P^Yo^m = G[k]/N.

endfor

end

Observe that the Qn
[
k

}

s within any one single segment, and therefore the P+^rof+^l’s within

any segment, are all equal. We call Q^h) (or Pn [k:},Yo[n{k]}) the probability of that segment.

Observe also that the cumulative probability Pk ,
which is defined as Pko + Pki + + Pk,x[k)- i, is

the sum of probabilities of all tuples where the m leftmost symbols are equal to x[k — m:k —
1]

and where the rightmost symbol is < rc[fc] — 1. Stated otherwise, P^k] is the sum of the

probabilities of all the segments within the supersegment containing k such that the m leftmost

symbols are equal to those of Y[7r[fc]] and the rightmost symbol is < rr [7r[/c]] — 1. The following

procedure will compute those cumulative probabilities Pk s.

Procedure Compute-cumprobs(input: Z
,

7r, Qk s, Phi s; output: Pk s)

begin

1. Put a left-barrier and a right-barrier at the beginning and at the end of every superseg-

ment, respectively, as follows. For each /c, denote by Z'[k] the m-tuple consisting of the

m leftmost components of Z[k\, that is, Z'[k\ is all but the rightmost component of Z[k).

Put a left barrier at k = 0 and a right barrier at k = N — 1. Afterwords, do
for k = 0 to TV — 2 pardo

if Z'[k\ < Z'[k + 1], put a right barrier at k and a left barrier at k + 1.

endfor

2. Let h[0 : N — 1] be a real array where every term is initialized to 0; for each k =
0,1,2,..., ./V — 1 ,

h[k] is associated with Z[k\.

for k = 0 to N — 1 pardo
if k happens to be the start of a segment (rather than a supersegment), then

Set h[k] P-rv[k\,Zo[k\ •

endfor

3. H[0 : N — l]=Barrier-Parprefix(/i), using the supersegment barriers.

It can be easily shown that H[k] = the sum of the probabilities of all the segments
within the supersegment containing k such that the m leftmost symbols are equal to

those of y[7r[/:]] and the rightmost symbol is < x[7r[/c]]. After the discussion above,m = p*
[*] + Q^ik}- This justifies the next step.

4. for k = 0 to N — 1 pardo
P-n[k] — -^[^j Qn[k]-

endfor

end

Time Analysis of Phase I

For each k
,
assume that x[k), y[fc] and Z[k] will be hosted by processor k. The gathering of

x[k — m : k] to processor k to form Y[k\ requires m shifts that send data from node i to node
f + 1 for all i. Each shift takes O(logiV) communication time on an N-processor hypercube.
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Therefore, the forming of Y takes 0(m log N) — 0(\ogN
)
communication time for the m shifts.

The reason m was dropped from the time formula is because m is fairly small, in the order of

1 — 5 usually, and thus is assumed to be a constant.

Parsort takes OQog2 N) time on an V-processor hypercube. Because of the special suit-

ability of hypercubes for bitonic sorting, the architecture for arithmetic coding will be assumed
to be an iV-processor hypercube.

Procedure Compute-probs will be shown to take 0(log N) time. Step 1 involves an exchange
of the values Z[k\ and Z[k + 1] between processors k and k + 1, for all k. This is accomplished
by two shifts: one from k to k + 1 and the other from k + 1 to k, for all k. Thus, this step takes

O(logiV) time. Step 2 takes 0(1) time. Step 3, Barrier-Parprefix, takes O(logiV) time. Step

4, being several independent broadcasts within nonoverlapping portions of the hypercube, also

takes 0(\ogN
)
time. Finally, step 5 takes 0(1) time because it is a simple parallel step. This

establishes that the whole procedure takes O (log AT) parallel time.

The analysis of the procedure Compute-cumprobs is very similar, and shows that it takes

0(\ogN) parallel time as well.

It must be noted that after executing the last two procedures, the probabilities Pk and

Qk are to be sent to processor k
,
for each k — 0,1,..., AT — 1. At present, P^k i and Q^k]

are in processor k along with Z[k\. Therefore, for all k
,
processor k sends Pn [k\ and Qn[-n[k] to

processor 7r[k\. That is, this communication step is just a permutation routing of 7r. If routed

using Valiant’s randomized routing algorithm [17], it will take 0(log N) communication time
with overwhelming probability. Otherwise, n can be routed by bitonic sorting of its destinations,

taking 0(log
2 N

)
time.

In conclusion, the statistics gathering process takes 0(log2 7V) parallel time for both com-
munication and computation. It remains to parallelize Phase II of arithmetic coding.

Parallelization of Phase II: the Computation of [l r
\

It will be shown that the computation of the interval [L R

}

is the product of N 2 x 2

matrices formed from the probabilities Pk and Qk . Afterwards, we can use the parallel operation

Parmult to multiply the N matrices in O(logiV) time on N processors.

Let the updated values of L and R at iteration k of the for-loop of Phase II of the algorithm

‘Arithmetic-coding’ be denoted Lk and Rk ,
respectively. Clearly, Lk — Lk_i+Pk(Rk_i — Lk-\) —

(1 — Pk)Lk~ i + PkRk~ i, and Rk = L k + Qk {Rk-\ — Lk_i) = (1 — Pk)Lk-

1

+ PkRk-

1

-F Qk(Rk-

1

—
Lk- 1 ) = (1 - Pfc - Qk)Lk -

1

+ (
Pk + Qk)Rk- 1 - In summary, we have

Lk = (1 — Pk)Lk-

1

+ PkRk-

1

and Rk — (1 — Pk — Qk )Lk-i + (
Pk + Qk)Rk-\. (1)

Letting
' Lk

‘

and Ak =
'

1 -Pk Pk'

Rk 1 — Pk ~ Qk Pk + Qk

equation 1 becomes a simple vector recurrence relation of order 1:

^ - AkXk_ i. (3)

The last equation implies that the last subinterval [

L

i?] = [Ljv-i Rn-i] that is being sought,

which corresponds to Vjv-i, is XN_ i
— AN- 1 Ajv_2

- - • Aq-X-i, or equivalently,

Ln-i

Rn-i
— AN_iAN-

2

Ac (
4

)
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Since X-\ = [L_ i = [0 lF, it follows that [L^-i is the right column of the prod-
uct matrix AN_xAN-2

" ' A0 . That product is clearly computable with the parallel operation
Parmult(.4Ar_i :0), taking 0(log N) time on N processors, as indicated in section 2. The whole
parallel algorithm for arithmetic coding can now be put together as follows.

Algorithm Parallel-arithmetic-coding(input: x[0 : N —
1]; output: B

)

begin

Form the array Y[0 : N — 1] of tuples;

Parsort(Y; Z,7r);

Compute-probs(Z, 7t; Qk ’s, Pk ,x[k] s);

Compute-cumprobs(Z, 7r, Qk s, Pk,x [k] s; Pk s);

Route permutation 7r to send Pn
[
k

]

and Qn
[
k

\

from processor k to processor 7r(k), for all /c;

for /c = 0 to N — 1 pardo

r i - pk pk

'

* -
[

1 - Pk - Qt Pk + Qk
\

;

endfor

C =Parmult(Ajv-i:o);

L = C(l, 2); R = C(2, 2);

^ = M°gn(#-£)1;
Take the n-ary representation of L = 0.LiL 2 ~.Lr ...;

B = [L x L2 ... Lr\

;

end

Time of the whole algorithm: Based on the preceding time analyses, the overall parallel

time of the algorithm is C^log
2 N) on an N-processor hypercube. Indeed, the parallel sorting

is what dominates the time, for otherwise, the algorithm takes 0(log N) time.

Arithmetic Decoding

Arithmetic decoding, which reconstructs the string x from the stream B and the probabil-

ities, is much harder to parallelize. It works as follows. The interval [L R
]

is narrowed down
progressively as in coding, where the initial value is [0 1]. The final interval, call it [Lf,Rf], is

known at decoding time from the stream B: D = nr where r is the length of the stream £,

Lf = (stream B as an n-ary number) /nr
,
and Rf = Lj + D. To figure out the next symbol in

the file, using the next n-ary digit B[i\, the current interval [L R\ is divided into n subintervals

as in coding, one subinterval per alphabet symbol; afterwards, decode B[i] as alphabet symbol
a,j if [Lj Rf] is contained within the j-th subinterval. Thus, the recurrence relation for the

decoded symbols involves essentially positional rather than numerical computations, making it

hard to parallelize its computation.

In practice, however, arithmetic coding is applied in a way that allows for some decod-

ing parallelism. Because of accuracy problems, if the input string size N is fairly large, the

intermediary intervals [L R] become too small for the precision afforded by most computers.

Therefore, long input files are broken into several blocks of lengths that do not lead to serious

underflow problems; those blocks are arithmetic-coded independently, except perhaps in the

statistics gathering, which involves the whole file to reduce the probability model information

overhead to be included in the header of the stream B. Accordingly, the streams of those blocks

can be decoded independently in parallel. The actual details are not included here, and will

vary from application to application, although the principle is the same.
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4 Parallel Run-Length Encoding

Run-length encoding (RLE) [12, 16] applies with good performance when the input string

a:[0 : iV — 1] consists of a relatively short sequence of runs (say r runs, r << TV), where a run

is a substring of consecutive symbols of equal value. RLE converts x into a sequence of pairs

(L0 ,
Vq ), (Li , Vi), ...

,
(Lr_x, Vr_i), where L{ is the length of the z-th run, and V* is the value of

the recurring symbol of that run.

Often, there is considerable redundancy in the values of the L/s and the V^’s, and certain Li

(or Vi) values occur more frequently than others. In that case, Huffman coding [4] is applied to

code the Li s and/or the Vi’s. Parallelizing Huffman coding is the subject of the next section.

However, in the parallel RLE algorithm, we will put the data in the right form and locations.

The parallel RLE algorithm coincides with the first 3 steps of the algorithm ‘Compute-probs’
that was developed earlier for arithmetic coding. The segments there correspond to runs in

RLE. After those steps execute, each right barrier of a segment has the L and V of its run.

Afterwards, the scattered (L, V) pairs should be gathered to the first r processors in the system,

in case further processing is needed, as for example Huffman coding the Li s and the V^’s. The
parallel algorithm for RLE can now be given as follows.

Algorithm Parallel-RLE(input: :r[0 : N — 1]; output: L, V)

begin

1. Put a left-barrier at k = 0 of x, and a right-barrier at k — N — 1;

2. for k = 0 to N — 2 pardo /* put barriers around the runs of x */

3. if x[k] ^ x[k + 1], then put a left-barrier at k and a right-barrier at k + 1;

endfor

4. Let #[0 : N —
1] be an integer array where every term is initialized to 1;

5. G[0 : N — l]=Barrier-Parprefix(^);

/* if k is a right-barrier, G[/c] is the length of the corresponding run */

6. Let h[0 : N —
1] be an integer array initialized to 0;

7. for k = 0 to N — 1 pardo

8. if k is a right-barrier, set h[k\ = 1;

endfor

9. H[0 : N - l]=Barrier-Parprefix(/i);

/* when k is a right-barrier and i = H[k] —
1, the corresponding run is the z-th run of x*/

10. for k = 0 to N —
1 pardo

11. if k is a right-barrier then

12. i = H[k
]

- 1 -Li = G[k];
V, - x[%

13. Processor k sends (L
Z
-,V[) to processor z;

endif

endfor

end
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Time Analysis of Parallel-RLE
The system is assumed to be an TV-processor hvpercube.

Steps 1-3 and 7-8 for barrier setting, as well as steps 4 and 6, take 0(1) parallel time.

Steps 5 and 9, being Barrier-Parprefix, take O(logTV) time. The computation in steps 10-

12 takes 0(1) time, while the communication in those steps, which is a partial-permutation

routing, takes O(logTV) time using Valiant’s randomized routing algorithm. Therefore, the

wrhole algorithm takes O(logTV) time.

Parallel Run-length Decoding
To perform run-length decoding (RLD), we start from the (Li, V*)’s as input, where (Li, V)

is in processor i, for i = 0, 1, ..., r — 1. RLD reconstructs the original string x, where the first

Lq symbols are all Vo, the next L\ symbols are all Vi, and so on. The algorithm determines the

start and end locations of each run. Run 0 starts at location 0 and ends at location L0 — 1,

run 1 starts at location L0 and ends at location L0 + Li —
1, and generally, run i starts at

location S[i — 1] = L0 + L\ + ... + L*_i and ends at location L0 + L\ + ... + L*_i + L* — 1.

All those prefix sums of L are computed with Parprefix(L) in O(logr) time on r processors.

Afterwards, for i = 1, 2, ..., r — 1, processor i must send
(
L

t , Vi) to processor Lq + L\ + ... + L;_i;

the sending of those r — 1 messages is a partial-permutation routing that takes O(logV) time
on the hypercube. Finally, those recipients of the (Lj, V^)’ s, including processor 0 which has

(L0 ,
V0 ), broadcast their value V^ to the next Li — 1 processors, completing the decoding. Those

r broadcasts run in nonoverlapping parts of the hypercube, taking O(max({log L t })
= O(logTV)

time, and thus the whole algorithm, summarized below, takes 0(\ogN) time.

Algorithm Parallel-RLD (input: Lo:r-i, Vo:r-i; output: x
)

begin

5[0, r — l]=Parprefix(L0:r_i); /* S[i\,Li, and V^ are in processor i */

for 2 = 1 to v — 1 pardo

Processor i sends (Li, Vi) to processor 5[i — 1];

endfor

for 2 = 0 to r — 1 pardo
Processor s = —

1] broadcasts Vi to processors s + 1, s + 2, ..., s -t- L, — 1;

for j = —
1] to S[i — 1] + Li — 1 pardo

Processor j sets x[j] = V^;

endfor

endfor

end

5 Parallel Huffman Coding

In Huffman coding the individual symbols of the alphabet are coded in binary using the fre-

quencies (or probabilities) of occurrences of the symbols, such that no symbol code is the prefix

of another symbol code. Afterwards, the input file (or string x[0 : TV — 1]) is coded by replacing

each symbol xfT] by its code.

The Huffman coding algorithm for coding the alphabet is a greedy algorithm and works
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as follows. Suppose that the alphabet is {ao> ai,

a

n_i}, and let pi be the probability of

occurrence of symbol a*, for i = 0,

1

,

n

— 1. A Huffman binary tree is built by the algorithm.

First, a node is created for each alphabet symbol; afterwards, the algorithm repeatedly selects

two unparented nodes of smallest probabilities, creates a new parent node for them, and makes
the probability of the new node to be the sum of the probabilities of its two children. Once
the root is created, the edges of the tree are labeled, left edges with 0, right edges with 1.

Finally, each symbol is coded with the binary sequence that labels the path from the root to

the leaf node of that symbol. By creating a min-heap for the original leaves (according to the

probabilities), the repeated insertions and deletions on the heap will take O(nlogn) time. The
labeling of the tree and extractions of the leaf codes take 0(n log n) time as well. Therefore,

the whole algorithm for alphabet coding takes 0(n log n) time. Considering that the alphabet

tends to be very small in size, and independent of the — much larger — size of the input files

to be coded, the O(nlogn) is relatively very small, and can be even treated as constant when
measuring the time of coding the whole input file.

What should not be considered constant is the time for statistics gathering, i.e., for comput-
ing the probabilities p^ s. This process is parallelizable as was done in the previous two sections:

sort the input string in parallel using Parsort, then use Barrier-Parprefix to compute the

frequencies of the distinct symbols in the input string. Those frequencies are then divided by N
to obtain the probabilities, although this step is unnecessary since Huffman coding would give

the same results if it uses frequencies instead of probabilities. The statistics gathering process

clearly takes 0(log
2 N) parallel time.

Once the symbol codes have been determined, each symbol x[i] is replaced by its code,

and all symbols are so processed in parallel. The concatenation of all the symbol codes is the

output bitstream. This code replacement process takes 0(1) parallel time, since the length of

each symbol code is < n and is thus a constant. In summary, the total time of Huffman coding

an input file of N symbols is 0(n log n + log
2 N).

Huffman decoding works as follows, assuming that the Huffman tree is available. The
bitstream is scanned from left to right. When a bit is scanned, we traverse the Huffman tree

one step down, left if the bit is 0, right if the bit is 1. Once a leaf is encountered, the scanned
substring that led from the root to the leaf is replaced (decoded) by the symbol of that leaf.

The process is repeated by resetting the traversal to start from the root, while the scanning

continues from where it left off. Clearly, this decoding process is very hard to parallelize, and
it may be inherently sequential. No attempt is made here to prove that.

One approach can be followed to bring some parallelism into Huffman decoding. In many
applications and compression standards such as JPEG, MPEG2, and the upcoming MPEG4,
the data is divided into blocks at some stage in the compression process, and the blocks are

quantized then entropy-coded independently of one another. The bitstreams of those blocks

are then concatenated into a single bit stream according to some static ordering scheme of the

blocks. A special End-of-Block (EOB) symbol is added to the alphabet and entropy-coded like

other symbols; the EOB symbol tells the decoder when a block ends and the next begins. If

parallelization is needed, the bitstreams of the various blocks should NOT be concatenated into

one single stream. Rather, they should be formed into as many separate streams as there are

processors to be used for decoding. That way, the separate streams can be decoded indepen-

dently in parallel. By making the many streams to be of roughly equal length, the decoding

processes could be load balanced, leading to nearly optimal parallel decoding. The details of

that approach, and the actual structure of the file that contains the separate bitstreams, are

left to future work.
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6 Conclusions

In this paper we developed parallel algorithms for several widely used entropy coding techniques,

namely, arithmetic coding, run-length encoding, and Huffman coding. In all three, the coding
turned out to be parallelizable, taking mainly 0(log N) time on N processors, except in the cases

where sorting was used for statistics gathering, requiring 0(log2 N) time. Decoding, however,

turned out to be much harder to parallelize, except in the RLE case which is logarithmic in time.

In practice, however, both arithmetic and Huffman coding are used in such a way that allows

for simple parallel decoding. The details of parallelizing Huffman decoding and arithmetic

decoding, and the performance of those algorithms, are the subject of further research.
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